12 research outputs found

    Intensity interferometry-based 3D imaging

    Full text link
    The development of single-photon counting detectors and arrays has made tremendous steps in recent years, not the least because of various new applications in, e.g., LIDAR devices. In this work, a 3D imaging device based on real thermal light intensity interferometry is presented. By using gated SPAD technology, a basic 3D scene is imaged in reasonable measurement time. Compared to conventional approaches, the proposed synchronized photon counting allows using more light modes to enhance 3D ranging performance. Advantages like robustness to atmospheric scattering or autonomy by exploiting external light sources can make this ranging approach interesting for future applications

    Multisource Holography

    Full text link
    Holographic displays promise several benefits including high quality 3D imagery, accurate accommodation cues, and compact form-factors. However, holography relies on coherent illumination which can create undesirable speckle noise in the final image. Although smooth phase holograms can be speckle-free, their non-uniform eyebox makes them impractical, and speckle mitigation with partially coherent sources also reduces resolution. Averaging sequential frames for speckle reduction requires high speed modulators and consumes temporal bandwidth that may be needed elsewhere in the system. In this work, we propose multisource holography, a novel architecture that uses an array of sources to suppress speckle in a single frame without sacrificing resolution. By using two spatial light modulators, arranged sequentially, each source in the array can be controlled almost independently to create a version of the target content with different speckle. Speckle is then suppressed when the contributions from the multiple sources are averaged at the image plane. We introduce an algorithm to calculate multisource holograms, analyze the design space, and demonstrate up to a 10 dB increase in peak signal-to-noise ratio compared to an equivalent single source system. Finally, we validate the concept with a benchtop experimental prototype by producing both 2D images and focal stacks with natural defocus cues.Comment: 14 pages, 9 figures, to be published in SIGGRAPH Asia 202

    Analysis of an Active Deformylation Mechanism of 5‐Formyl‐deoxycytidine (fdC) in Stem Cells

    Get PDF
    The removal of 5‐methyl‐deoxycytidine (mdC) from promoter elements is associated with reactivation of the silenced corresponding genes. It takes place through an active demethylation process involving the oxidation of mdC to 5‐hydroxymethyl‐deoxycytidine (hmdC) and further on to 5‐formyl‐deoxycytidine (fdC) and 5‐carboxy‐deoxycytidine (cadC) with the help of α‐ketoglutarate‐dependent Tet oxygenases. The next step can occur through the action of a glycosylase (TDG), which cleaves fdC out of the genome for replacement by dC. A second pathway is proposed to involve C−C bond cleavage that converts fdC directly into dC. A 6‐aza‐5‐formyl‐deoxycytidine (a‐fdC) probe molecule was synthesized and fed to various somatic cell lines and induced mouse embryonic stem cells, together with a 2′‐fluorinated fdC analogue (F‐fdC). While deformylation of F‐fdC was clearly observed in vivo, it did not occur with a‐fdC, thus suggesting that the C−C bond‐cleaving deformylation is initiated by nucleophilic activation

    Neural \'{E}tendue Expander for Ultra-Wide-Angle High-Fidelity Holographic Display

    Full text link
    Holographic displays can generate light fields by dynamically modulating the wavefront of a coherent beam of light using a spatial light modulator, promising rich virtual and augmented reality applications. However, the limited spatial resolution of existing dynamic spatial light modulators imposes a tight bound on the diffraction angle. As a result, modern holographic displays possess low \'{e}tendue, which is the product of the display area and the maximum solid angle of diffracted light. The low \'{e}tendue forces a sacrifice of either the field-of-view (FOV) or the display size. In this work, we lift this limitation by presenting neural \'{e}tendue expanders. This new breed of optical elements, which is learned from a natural image dataset, enables higher diffraction angles for ultra-wide FOV while maintaining both a compact form factor and the fidelity of displayed contents to human viewers. With neural \'{e}tendue expanders, we experimentally achieve 64×\times \'{e}tendue expansion of natural images in full color, expanding the FOV by an order of magnitude horizontally and vertically, with high-fidelity reconstruction quality (measured in PSNR) over 29 dB on retinal-resolution images

    eLearning COLEACP : un dispositif de formation au service des professionnels du secteur agricole en Afrique

    Full text link
    Le dispositif de formation à distance du COLEACP (Comité de Liaison Europe-Afrique-Caraïbes-Pacifique) est une composante d'un système complet de formation dédié au renforcement des capacités des opérateurs des filières agricoles des pays ACP (Afrique Caraïbes et Pacifique)

    Seifan et al - Field survey information

    No full text
    Species recorded in the field survey under different environmental conditions. DRY/WET – plots with low/high flooding probabilities respectively; M+/ M– – plots with/without mole activity respectively. For each species listed, its abundance (number of individuals found in the survey plots) per environmental condition is given
    corecore